Important Disclaimer Notice

If you are looking for the official U.S. Government forecast for space weather, please go to NOAA's Space Weather Prediction Center ( This "Experimental Research Information" consists of preliminary NASA research products and should be interpreted and used accordingly.

CME Arrival Time Scoreboard

CME arrival time predictions from the research community
The CME Scoreboard (developed at the Community Coordinated Modeling Center, CCMC) is a research-based forecasting methods validation activity which provides a central location for the community to:
        • submit their forecast in real-time
        • quickly view all forecasts at once in real-time
        • compare forecasting methods when the event has arrived

>>Click here to go to the CME Arrival Time Scoreboard<<

CME Propagation Models

This is a subset of space weather forecasting CME propagation models (see below for references) that can be selected as the CME arrival time "Prediction Method" in the CME arrival time Scoreboard. If you would like to register your prediction method, please send an email to M. Leila Mays or Yihua Zheng with your model/technique details. All prediction methods are welcome and all are encouraged to participate in this research activity.

CME shock arrival forecast:
Anemomilos (Tobiska, 2013)
CAT-PUMA (CME Arrival Time Prediction Using Machine learning Algorithms) (Liu et al., 2018)
• EAM (Effective Acceleration Model) (Paouris et al., 2017)
• ElEvo (Ellipse Evolution) Model (Möstl et al., 2015)
• ESA (Empirical Shock Arrival) Model (Gopalswamy et al., 2001, 2005)
• H3DMHD (HAFv.3 +3DMHD) Model (Wu et al., 2011)
• HAFv.3 (Fry et al., 2001, 2003, Smith et al., 2009, McKenna-Lawlor et al., 2006)
• SAP (Sheath-accumulating Propagation) (Takahashi and Shibata, 2017)
• SARM (Shock ARrival Model) (Núñez et al., in preparation)
• SPM (Feng and Zhao, 2006) and SPM2 (Zhao and Feng, 2014)
• STOA (Shock Time of Arrival) (Dryer et al., 1984, 2004, Fry et al., 2001, McKenna-Lawlor et al., 2006)
WSA-ENLIL + Cone Model (Odstrcil et al., 2004)
Ballistic projection

CME arrival forecast:
BHV (Bothmer Heseman Venzmer) Model (Bothmer and Schwenn, 1998)
DBM (Drag Based Model) (Vršnak et al., 2013)
DBM + ESWF (Drag Based Model + Empirical Solar wind Forecast) (Vršnak, Temmer, Veronig, 2007; Rotter et al., 2015)
COMESEP automated system (CGFT, Geomag24) (Crosby et al., 2012)
• ECA (Empirical CME Arrival) Model (Gopalswamy et al., 2000, 2001)
• Expansion Speed Prediction Model (Schwenn, 2005)
WSA-ENLIL + Cone Model (Odstrcil et al., 2004)
HelTomo (Jackson et al., 2010, 2011)
HI J-map technique (Sheeley, 2008; Rouillard et al., 2008; Davis et al., 2009, 2011)
• TH (Tappin-Howard) Model (Tappin and Howard, 2009, Howard and Tappin, 2010)
Ballistic projection


Bothmer, V. and Schwenn, R.: The structure and origin of magnetic clouds in the solar wind, Ann. Geophys., 16, 1-24, doi:10.1007/s00585-997-0001-x.

Crosby, N. B., A. Veronig, E. Robbrecht, B. Vrsnak, S. Vennerstrom, O. Malandraki, S. Dalla, L. Rodriguez, N. Srivastava, M. Hesse, D. Odstrcil and COMESEP Consortium: Forecasting the space weather impact: The COMESEP project, AIP Conf. Proc. 1500, 159 (2012); doi:10.1063/1.4768760

Davis, C. J., J. A. Davies, M. Lockwood, A. P. Rouillard, C. J. Eyles, and R. A. Harrison (2009), Stereoscopic imaging of an Earth‐impacting solar coronal mass ejection: A major milestone for the STEREO mission, Geophys. Res. Lett., 36, L08102, doi:10.1029/2009GL038021.

Davis, C. J., et al. (2011), A comparison of space weather analysis techniques used to predict the arrival of the Earth‐directed CME and its shockwave launched on 8 April 2010, Space Weather, 9, S01005, doi:10.1029/2010SW000620.

Dryer, M. and D. F. Smart (1984), Dynamical Models of Coronal Transients and Interplanetary Disturbances, Adv. Space Res., 4, 291‑301, doi:10.1016/0273-1177(84)90200-X.

Dryer, M., Z. Smith, C. D. Fry, W. Sun, C. S. Deehr, and S.-I. Akasofu (2004), Real-time shock arrival predictions during the ‘‘Halloween 2003 epoch,’’ Space Weather, 2, S09001, doi:10.1029/2004SW000087.

Feng, X., X. Zhao (2006), A New Prediction Method for the Arrival Time of Interplanetary Shocks, Solar Physics, 238, 1, doi:10.1007/s11207-006-0185-3.

Fry, C. D., W. Sun, C. S. Deehr, M. Dryer, Z. Smith, S.-I. Akasofu, M. Tokumaru, and M. Kojima, Improvements to the HAF solar wind model for space weather predictions, J. Geophys. Res., 106, 20,985 – 21,001, 2001, doi:10.1029/2000JA000220.

Fry, C. D., M. Dryer, Z. Smith, W. Sun, C. S. Deehr, and S.-I. Akasofu (2003), Forecasting solar wind structures and shock arrival times using an ensemble of models, J. Geophys. Res., 108(A2), 1070, doi:10.1029/2002JA009474.

Gopalswamy, N., Lara, A., Lepping, R.P., et al. Interplanetary acceleration of coronal mass ejections. J. Geophys. Res. Lett. 27, 145–148, 2000, 10.1029/1999GL003639.

Gopalswamy, N., A. Lara, S. Yashiro, M. L. Kaiser, and R. A. Howard (2001), Predicting the 1-AU arrival times of coronal mass ejections, J. Geophys. Res., 106, 29, 207, 10.1029/2001JA000177.

Gopalswamy, N., A. Lara, P. K. Manoharan, and R. A. Howard (2005), An empirical model to predict the 1-AU arrival of interplanetary shocks, Adv. Space Res., 36, 2289, 10.1016/j.asr.2004.07.014.

Jackson, B. V., P. P. Hick, M. M. Bisi, J. M. Clover, and A. Buffington (2010), Inclusion of In-Situ Velocity Measurements into the UCSD Time-Dependent Tomography to Constrain and Better-Forecast Remote-Sensing Observations, Sol. Phys., 265, 245-256, doi:10.1007/s11207-010-9529-0

Jackson, B. V., P. P. Hick, A. Buffington, M. M. Bisi, J. M. Clover, M. Tokumaru, M. Kojima, and K. Fujiki (2011), Solar Mass Ejection Imager (SMEI) 3-D reconstruction of density enhancements behind interplanetary shocks: In-situ comparison near Earth and at STEREO, J. Atmos. Sol. Terr., 73, 1214-1227, doi:10.1016/j.jastp.2010.11.023

Liu, Jiajia, Yudong Ye, Chenlong Shen, Yuming Wang, Robert Erdélyi (2018), A New Tool for CME Arrival Time Prediction Using Machine Learning Algorithms: CAT-PUMA, accepted by the Astrophysical Journal. arXiv:1802.02803

McKenna-Lawlor, S., M. Dryer, M.D. Kartalev, Z. Smith, C.D. Fry, W. Sun, C.S. Deehr, K. Kecskemety, and K. Kudela (2006), Near Real-time Predictions of the Arrival at the Earth of Flare-generated Shocks during Solar Cycle 23, J. Geophys. Res., 111, A11103, doi:10.1029/2005JA011162.

Möstl, C., T. Rollett, R. Frahm, Y. Liu, D. Long, R. Colaninno, M. Reiss, M. Temmer, C. Farrugia, A. Posner, M. Dumbović, M. Janvier, P. Démoulin, P. Boakes, A. Devos, E. Kraaikamp, M. L. Mays, B. Vršnak (2015), Strong coronal channeling and interplanetary evolution of a solar storm up to Earth and Mars, Nature Communications, 6:7135. 10.1038/ncomms8135

Nuñez M., T. Nieves-Chinchilla, A. Pulkkinen, Empirical prediction of shock arrival times from CME and flare data, in preparation

Tappin, S. J., and T. A. Howard (2009), Interplanetary coronal mass ejections observed in the heliosphere: 2. Model and data comparison, Space Sci. Rev., 147, 55–87, doi:10.1007/s11214-009-9550-5.

Howard T. A., and S. J. Tappin, Application of a new phenomenological coronal mass ejection model to space weather forecasting, Space Weather, Volume 8, Issue 7, July 2010, 10.1029/2009SW000531.

Odstrcil, D., V. J. Pizzo, J. A. Linker, P. Riley, R. Lionello, Z. Mikic, and J. G. Luhmann (2004), Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes, J. Atmos. Sol. Terr. Phys., 66, 1311-1326, doi:10.1016/j.jastp.2004.04.007.

Paouris, E. & Mavromichalaki, H. Sol Phys (2017) 292: 30. doi:10.1007/s11207-017-1050-2.

Rotter, T., A. M. Veronig, M. Temmer, B. Vršnak (2015), Real-Time Solar Wind Prediction Based on SDO/AIA Coronal Hole Data, Solar Physics, 290, 5, doi:.

Rouillard, A. P., et al. (2008), First imaging of corotating interaction regions using the STEREO spacecraft, Geophys. Res. Lett., 35, L10110, doi:10.1029/2008GL033767.

Schwenn, R., Dal Lago, A., Huttunen, E., and Gonzalez, W. D.: The association of coronal mass ejections with their effects near the Earth, Ann. Geophys., 23, 1033-1059, doi:10.5194/angeo-23-1033-2005, 2005.

Sheeley, N. R., Jr., et al. (2008), Heliospheric Images of the solar wind at Earth, Astrophys. J., 675, 853–862, doi:10.1086/526422.

Smith, Z. K., M. Dryer, S.M.P. McKenna-Lawlor, C.D. Fry, C.S. Deehr, and W. Sun (2009), Operational validation of HAF’s predictions of interplanetary shock arrivals at Earth: Declining phase of Solar Cycle 23, J. Geophys. Res., 114(5), A05106, doi:10.1029/2008JA013836.

T. Takahashi and K. Shibata (2017), Sheath-accumulating Propagation of Interplanetary Coronal Mass Ejection, The Astrophysical Journal Letters, 837, 2, doi:10.3847/2041-8213/aa624c.

Tobiska, W. K., D. Knipp, W. J. Burke, D. Bouwer, J. Bailey, D. Odstrcil, M. P. Hagan, J. Gannon, and B. R. Bowman (2013), The Anemomilos prediction methodology for Dst, Space Weather, 11, 490–508, doi:10.1002/swe.20094.

Vršnak, B., M. Temmer, A. Veronig (2007), Coronal Holes and Solar Wind High-Speed Streams: I. Forecasting the Solar Wind Parameters, Solar Physics, 240, 2, doi:.

Vršnak, B. , T. Žic, D. Vrbanec, M. Temmer, T. Rollett, C. Möstl, A. Veronig, J. Čalogović, M. Dumbović, S. Lulić, Y.-J. Moon, A. Shanmugaraju (2013), Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model, Solar Physics, 285, doi:10.1007/s11207-012-0035-4.

Wu, C.-C., M. Dryer, S. T. Wu, B. E. Wood, C. D. Fry, K. Liou, and S. Plunkett (2011), Global three-dimensional simulation of the interplanetary evolution of the observed geoeffective coronal mass ejection during the epoch 1–4 August 2010, J. Geophys. Res., 116, A12103, doi:10.1029/2011JA016947.

Zhao, X., X. Feng (2014), Shock Propagation Model version 2 and its application in predicting the arrivals at Earth of interplanetary shocks during Solar Cycle 23, J. Geophys. Res., 119, 1, doi:10.1002/2012JA018503.